Passi avanti negli studio della CO2 prodotta dalle montagne, anche non vulcaniche. Un sistema naturale che impatta con efficienza nell’atmosfera. Lo dicono gli studiosi dell’Università di Torino assieme ai colleghi della Bicocca

Anche le montagne producono gas serra. E per farlo non per forza devono essere di natura vulcanica. Ma, è qui sta la bella notizia appena rilasciata dal Dipartimento di Scienze della Terra dell’Università di Torino: queste stesse montagne sono in grado di rilasciarli efficacemente nell’atmosfera.

Lo studio condotto da Chiara Groppo e Franco Rolfo del Dipartimento di Scienze della Terra dell’Università di Torino, in collaborazione con Maria Luce Frezzotti dell’Università di Milano-Bicocca, prende spunto dalle catene montuose derivate dalla collisione tra continenti, come l’Himalaya.

Tipi di montagne che, se pur prive di vulcani, producono da sempre anidride carbonica in quantità rilevanti, dello stesso ordine di grandezza di quelle emesse dall’attività vulcanica.

I meccanismi di produzione della CO2 in profondità in questi contesti geologici e i processi di rilascio della stessa in superficie sono relativamente ben conosciuti.

La CO2 viene prodotta a profondità di 20-30 km essenzialmente attraverso reazioni metamorfiche di decarbonatazione, che avvengono a spese di originari sedimenti contenenti carbonati.

In superficie, la CO2 viene tipicamente rilasciata attraverso circuiti idrotermali, in corrispondenza di sorgenti calde localizzate lungo importanti discontinuità tettoniche (faglie). Sono invece sostanzialmente ancora sconosciuti i meccanismi che consentono di mobilizzare e trasportare la CO2 dalla sorgente profonda alla superficie.

Gli autori di questo studio hanno usato l’approccio della modellizzazione termodinamica per investigare i processi di decarbonatazione in sedimenti metamorfosati lungo gradienti geotermici medio-alti.

I risultati della modellizzazione dimostrano che, in queste condizioni di temperatura (T) e pressione (P) (T>590°C, P>7.8 kbar), i fluidi prodotti sono immiscibili e si separano alla nascita in due componenti: un vapore ricco in CO2 e una salamoia idro-salina, con proprietà chimico-fisiche molto diverse e, conseguentemente, una diversa mobilità.

I fluidi ricchi in CO2, molto più abbondanti, sono meno densi e hanno un comportamento non bagnante: sono quindi in grado di risalire rapidamente in superficie, carbo-fratturando le rocce incassanti e/o sfruttando faglie profonde.

Le salamoie idro-saline, invece, sono molto più dense e hanno un comportamento bagnante; stazionano quindi in profondità, permeando le rocce incassanti.

Questo modello concorda perfettamente con quanto attualmente osservato in Himalaya, in particolare con le diffuse emissioni di CO2 gassosa misurate direttamente al suolo e con le anomalie di conduttività elettrica registrate dai geofisici a una profondità di 20-30 km, immediatamente al di sotto di una zona crostale caratterizzata da un’intensa micro-sismicità.

Lo studio suggerisce quindi che la produzione di fluidi immiscibili alla nascita faciliti la rapida migrazione della CO2 dalla sorgente profonda alla superficie e dimostra che le catene montuose di tipo collisionale, come l’Himalaya, sono degli importanti serbatoi di CO2 che può essere efficacemente degassata in superficie.

Lo studio è stato svolto nell’ambito del progetto Prin2007 Connect4Carbon: Carbon cycling and Earth control on the livable planet: connecting deep key carbon sources to surface CO2 degassing by transfer processes ed è stato pubblicato su una rivista del gruppo editoriale Nature: Communications Earth&Environment.

L’articolo Quella CO2 naturale… che vien dalla montagna è stato pubblicato su Magazine Green Planner.

Di